Random Sprite Challenge
Experience: 1st year, 4th quarter
Practice: Recognizing and defining computational problems, Creating computational artifacts, Testing and refining computational artifacts, and Communicating about computing
Concept: Algorithms, Control, Modularity, and Program Development
Length: 80+
Overview and Purpose
Coders create a randomly generate sprite and then review how to add costumes to a sprite to simulate lifelike movements or animations in a scene or short story. The purpose of this project is to learn how to better simulate motion/animations of a newly created sprite.
Project Extensions
Suggested extensions
Add even more (30+ minutes, or at least one class):
If time permits and coders are interested in this project, encourage coders to explore what else they can create in Scratch by trying out new blocks and reviewing previous projects to get ideas for this project. When changes are made, encourage them to alter their comments to reflect the changes (either in the moment or at the end of class).
While facilitating this process, monitor to make sure coders don’t stick with one feature for too long. In particular, coders like to edit their sprites/backgrounds by painting on them or taking photos, or listen to the built-in sounds in Scratch. It may help to set a timer for creation processes outside of using blocks so coders focus their efforts on coding.
Resources, suggestions, and connections
Standards reinforced:
- 1B-AP-10 Create programs that include sequences, events, loops, and conditionals
Practices reinforced:
- Testing and refining computational artifacts
- Creating computational artifacts
Concepts reinforced:
- Algorithms
- Control
Facilitation Suggestion: Some coders may not thrive in inquiry based approaches to learning, so we can encourage them to use the Tutorials to get more ideas for their projects; however, we may need to remind coders the suggestions provided by Scratch are not specific to our projects, so it may create some unwanted results unless the code is modified to match our own intentions.
Suggested questions:
- What else can you do with Scratch?
- Can you add another random sprite to your project?
- What have you learned in other projects that you could use in this project?
Similar projects:
Have coders explore the code of other peers in their class, or on a project studio dedicated to this project. Encourage coders to ask questions about each other’s code. When changes are made, encourage coders to alter their comments to reflect the changes (either in the moment or at the end of class).
Watch this video (3:20) if you are unsure how to use a project studio.
Standards reinforced:
- 1B-AP-10 Create programs that include sequences, events, loops, and conditionals
- 1B-AP-12 Modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features
Practices reinforced:
- Testing and refining computational artifacts
Concepts reinforced:
- Algorithms
Note: Coders may need a gentle reminder we are looking at other projects to get ideas for our own project, not to simply play around. For example, “look for five minutes,” “look at no more than five other projects,” “find three projects that each do one thing you would like to add to your project,” or “find X number of projects that are similar to the project we are creating.”
Generic questions:
- How could you add your newly created sprite to this project?
- How would this change the project?
- What are some ways you can expand this project beyond what it can already do?
- How is this project similar (or different) to something you worked on today?
- What blocks did they use that you didn’t use?
- What do you think those blocks do?
- What’s something you like about their project that you could add to your project?
micro:bit extensions:
Note: the micro:bit requires installation of Scratch Link and a HEX file before it will work with a computer. Watch this video (2:22) and use this guide to learn how to get started with a micro:bit before encouraging coders to use the micro:bit blocks.
Much like the generic Scratch Tips folder linked in each Coder Resources document, the micro:bit Tips folder contains video and visual walkthroughs for project extensions applicable to a wide range of projects. Although not required, the micro:bit Tips folder uses numbers to indicate a suggested order for learning about using a micro:bit in Scratch; however, coders who are comfortable with experimentation can skip around to topics relevant to their project.
Standards reinforced:
- 1B-AP-09 Create programs that use variables to store and modify data
- 1B-AP-10 Create programs that include sequences, events, loops, and conditionals
- 1B-AP-11 Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process
- 1B-AP-15 Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended
Practices reinforced:
- Recognizing and defining computational problems
- Creating computational artifacts
- Developing and using abstractions
- Fostering an inclusive computing culture
- Testing and refining computational artifacts
Concepts reinforced:
- Algorithms
- Control
- Modularity
- Program Development
- Variables
Folder with all micro:bit quick reference guides: Click here
Additional Resources:
- Printable micro:bit cards
- Micro:bit’s Scratch account with example projects
Generic questions:
- How can you use a micro:bit to add news forms of user interaction?
- What do the different micro:bit event blocks do and how could you use them in a project?
- How could you use the LED display for your project?
- What do the tilt blocks do and how could you use them in your project?
- How could you use the buttons to add user/player controls?
- How might you use a micro:bit to make your project more accessible?
Differentiation
Less experienced coders
If coders struggle with this kind of challenge, pair them with other coders with more experience or understanding. Just make sure the lesser experienced coder “drives” the mouse and the more experienced coder can “navigate.” It might also help less experienced coders if they have time to see what others are creating with the blocks; encourage coders to walk around and see what others are doing and then adding similar code in their projects.
More experienced coders
If coders are very comfortable with this kind of challenge, pair them with other coders with less experience or understanding. Just make sure the lesser experienced coder “drives” the mouse and the more experienced coder can “navigate.”
Debugging Exercises (1-5+ minutes each)
Debugging exercises
This project does not have any associated debugging challenges; however, click here for hundreds of debugging exercises.
Resources and suggestions
Standards reinforced:
- 1B-AP-15 Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended
Practices reinforced:
- Testing and refining computational artifacts
Concepts reinforced:
- Algorithms
- Control
Suggested guiding questions:
- What should have happened but didn’t?
- Which sprite(s) do you think the problem is located in?
- What code is working and what code has the bug?
- Can you walk me through the algorithm (steps) and point out where it’s not working?
- Are there any blocks missing or out of place?
- How would you code this if you were coding this algorithm from Scratch?
- Another approach would be to read the question out loud and give hints as to what types of blocks (e.g., motion, looks, event, etc.) might be missing.
Reflective questions when solved:
- What was wrong with this code and how did you fix it?
- Is there another way to fix this bug using different code or tools?
- If this is not the first time they’ve coded: How was this exercise similar or different from other times you’ve debugged code in your own projects or in other exercises?
Unplugged Lessons and Resources
Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.
List of 100+ unplugged lessons and resources
Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project; however, unplugged lessons can occur before or after projects with the same concepts. An example for incorporating unplugged lessons:
Lesson 1. Getting started sequence and beginning project work
Lesson 2. Continuing project work
Lesson 3. Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4. Project extensions and sharing
Reflection and Sharing
Reflection suggestions
Coders can either discuss some of the following prompts with a neighbor, in a small group, as a class, or respond in a physical or digital journal. If reflecting in smaller groups or individually, walk around and ask questions to encourage deeper responses and assess for understanding. Here is a sample of a digital journal designed for Scratch (source) and here is an example of a printable journal useful for younger coders.
Sample reflection questions or journal prompts:
- How did you use computational thinking when creating your project?
- What’s something we learned while working on this project today?
- What are you proud of in your project?
- How did you work through a bug or difficult challenge today?
- What other projects could we do using the same concepts/blocks we used today?
- What’s something you had to debug today, and what strategy did you use to debug the error?
- What mistakes did you make and how did you learn from those mistakes?
- How did you help other coders with their projects?
- What did you learn from other coders today?
- What questions do you have about coding?
- What was challenging today?
- Why are comments helpful in our projects?
- How is this project similar to other projects you’ve worked on?
- How is it different?
- How do you think the example project uses variables to select the parts of a sprite?
- More sample prompts
Sharing suggestions
Standards reinforced:
- 1B-AP-17 Describe choices made during program development using code comments, presentations, and demonstrations
Practices reinforced:
- Communicating about computing
- Fostering an inclusive culture
Concepts reinforced:
- Algorithms
- Control
- Modularity
- Program development
Peer sharing and learning video: Click here (1:33)
At the end of class, coders can share with each other something they learned today. Encourage coders to ask questions about each other’s code or share their journals with each other. When sharing code, encourage coders to discuss something they like about their code as well as a suggestion for something else they might add.
Publicly sharing Scratch projects: If coders would like to publicly share their Scratch projects, they can follow these steps:
- Video: Share your project (2:22)
a. Quick reference guide - Video (Advanced): Create a thumbnail (4:17)
a. Quick reference guide