Knock, Knock
Experience: 1st year, 1st quarter
Practice: Creating computational artifacts, Testing and refining computational artifacts, and Communicating about computing
Concept: Algorithms and Control
Length: 40+
Overview and Purpose
Coders will unscramble a knock knock joke, then create their own jokes using two sprites. The purpose of this project is to introduce using wait blocks to simulate two sprites talking with each other.
Preparation (20+ minutes)
Customizing this project for your class (10+ minutes): Remix the project example to include your own jokes and your own sequences of code.
(10+ minutes) Read through each part of this lesson plan and decide which sections the coders you work with might be interested in and capable of engaging with in the amount of time you have with them. If using projects with sound, individual headphones are very helpful.
Download the offline version of Scratch: Although hopefully infrequent, your class might not be able to access Scratch due to Scratch’s servers going down or your school losing internet access. Events like these could completely derail your lesson plans for the day; however, there is an offline version of Scratch that coders could use when Scratch is inaccessible. Click here to download the offline version of Scratch on to each computer a coder uses and click here to learn more by watching a short video.
Resources for learning more
- BootUp Scratch Tips
- Videos and tips on Scratch from our YouTube channel
- BootUp Facilitation Tips
- Videos and tips on facilitating coding classes from our YouTube channel
- Scratch Starter Cards
- Printable cards with some sample starter code designed for beginners
- ScratchEd
- A Scratch community designed specifically for educators interested in sharing resources and discussing Scratch in education
- Scratch Help
- This includes examples of basic projects and resources to get started
- Scratch Videos
- Introductory videos and tips designed by the makers of Scratch
- Scratch Wiki
- This wiki includes a variety of explanations and tutorials
Getting Started (6-21+ minutes)
Suggested sequence
1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds about something they learned last time; assess for general understanding of the practices and concepts from the previous project.
Explain that today we are going to unscramble a knock knock joke and then add their own jokes to a project. Display and demonstrate the sample project (or your own remixed version). You could even take this opportunity to connect all of the blocks in the incorrect order and discuss the importance of sequencing.
Resources, suggestions, and connections
Practices reinforced:
- Communicating about computing
Video: Project Preview (0:49)
Video: Lesson pacing (1:48)
This can include a full class demonstration or guided exploration in small groups or individually. For small group and individual explorations, you can use the videos and quick reference guides embedded within this lesson, and focus on facilitating 1-on-1 throughout the process.
Example review discussion questions:
- What’s something new you learned last time you coded?
- Is there a new block or word you learned?
- What’s something you want to know more about?
- What’s something you could add or change to your previous project?
- What’s something that was easy/difficult about your previous project?
2. Discuss (3+ minutes):
Have coders talk with each other about how they might create a project like the one demonstrated. If coders are unsure, and the discussion questions aren’t helping, you can model thought processes: “I noticed the sprite moved around, so I think they used a motion block. What motion block(s) might be in the code? What else did you notice?” Open it up to a full group discussion. Another approach might be to wonder out loud by thinking aloud different algorithms and testing them out, next asking coders “what do you wonder about or want to try?”
Practices reinforced:
- Communicating about computing
Note: Discussions might include full class or small groups, or individual responses to discussion prompts. These discussions which ask coders to predict how a project might work, or think through how to create a project, are important aspects of learning to code. Not only does this process help coders think logically and creatively, but it does so without giving away the answer.
Example discussion questions:
- What would we need to know to make something like this in Scratch?
- What kind of blocks might we use?
- What else could you add or change in a project like this?
- What code from our previous projects might we use in a project like this?
- What kind of sprites might we see in a knock, knock joke?
- What kind of code might they have?
3. Log in (1-15+ minutes):
If not yet comfortable with logging in, review how to log into Scratch and create a new project.
If coders continue to have difficulty with logging in, you can create cards with a coder’s login information and store it in your desk. This will allow coders to access their account without displaying their login information to others.
Alternative login suggestion: Instead of logging in at the start of class, another approach is to wait until the end of class to log in so coders can immediately begin working on coding; however, coders may need a reminder to save before leaving or they will lose their work.
Why the variable length of time? It depends on comfort with login usernames/passwords and how often coders have signed into Scratch before. Although this process may take longer than desired at the beginning, coders will eventually be able to login within seconds rather than minutes.
What if some coders log in much faster than others? Set a timer for how long everyone has to log in to their account (e.g., 5 minutes). If anyone logs in faster than the time limit, they can open up previous projects and add to them. Your role during this time is to help out those who are having difficulty logging in. Once the timer goes off, everyone stops their process and prepares for the following chunk.
Project Work (35+ minutes; 1+ classes)
Suggested sequence
4. Unscramble a joke (15+ minutes):
3 minute demonstration
Display the code for both sprites. Tell the class their goal is to unscramble the blocks to create an algorithm that tells a knock knock joke. You can either display the completed joke without showing the code (full screen), display this image of the scrambled code, or the quick reference guide’s slide to show the code for both sprites.
12+ minute coding time and 1-on-1 facilitating
Give coders time to add in both sprites and unscramble their code. If a coder finishes, ask them to help out a peer or move on to the next chunk.
Resources, suggestions, and connections
Standards reinforced:
- 1B-AP-10 Create programs that include sequences, events, loops, and conditionals
Practices reinforced:
- Testing and refining computational artifacts
- Creating computational artifacts
Concepts reinforced:
- Algorithms
- Control
Video: Unscramble a joke (0:57)
Quick reference guide: Click here
A note on using the “Coder Resources” with your class: Young coders may need a demonstration (and semi-frequent friendly reminders) for how to navigate a browser with multiple tabs. The reason why is because kids will have at least three tabs open while working on a project: 1) a tab for Scratch, 2) a tab for the Coder Resources walkthrough, and 3) a tab for the video/visual walkthrough for each step in the Coder Resources document. Demonstrate how to navigate between these three tabs and point out that coders will close the video/visual walkthrough once they complete that particular step of a project and open a new tab for the next step or extension. Although this may seem obvious for many adults, we recommend doing this demonstration the first time kids use the Coder Resources and as friendly reminders when needed.
5. Add your own jokes (20+ minutes):
Ask coders to add in their own jokes or select from a list of jokes. Encourage coders to try something similar to what they unscrambled. Facilitate by walking around and asking questions about how coders might change their code so it’s not the same as the previous code.
Important: Give a friendly reminder the jokes need to be school appropriate. One suggestion might be to say something like “if you’re not comfortable sharing your joke with the principal, it’s probably not school appropriate.”
Standards reinforced:
- 1B-AP-10 Create programs that include sequences, events, loops, and conditionals
Practices reinforced:
- Testing and refining computational artifacts
- Creating computational artifacts
Concepts reinforced:
- Algorithms
- Control
Video: Add your own jokes (1:01)
5. Add in comments (the amount of time depends on typing speed and amount of code):
1 minute demonstration
When the project is nearing completion, bring up some code for the project and ask coders to explain to a neighbor how the code is going to work. Review how we can use comments in our program to add in explanations for code, so others can understand how our programs work.
Quickly review how to add in comments.
Commenting time
Ask coders to add in comments explaining the code throughout their project. Encourage coders to write clear and concise comments, and ask for clarification or elaboration when needed.
Standards reinforced:
- 1B-AP-17 Describe choices made during program development using code comments, presentations, and demonstrations
Practices reinforced:
- Communicating about computing
Concepts reinforced:
- Algorithms
Video: Add in comments (1:45)
Quick reference guide: Click here
Facilitation suggestion: One way to check for clarity of comments is to have a coder read out loud their comment and ask another coder to recreate their comment using code blocks. This may be a fun challenge for those who type fast while others are completing their comments.
Assessment
Standards reinforced:
- 1B-AP-17 Describe choices made during program development using code comments, presentations, and demonstrations
Practices reinforced:
- Communicating about computing
Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides resources for assessing both processes and products. If you would like some example questions for assessing this project, see below:
Summative (Assessment of Learning)
The debugging exercises, commenting on code, and projects themselves can all be forms of summative assessment if a criteria is developed for each project or there are “correct” ways of solving, describing, or creating.
For example, ask the following after a project:
- Can coders debug the debugging exercises?
- Did coders use a variety of block types in their algorithms and can they explain how they work together for specific purposes?
- Did coders include descriptive comments for each event in all of their sprites?
- Did coders successfully unscramble the original knock, knock joke and did they add more?
- Did coders add at least ## more knock, knock jokes?
- Choose a number appropriate for the coders you work with and the amount of time available.
Formative (Assessment for Learning)
The 1-on-1 facilitating during each project is a form of formative assessment because the primary role of the facilitator is to ask questions to guide understanding; storyboarding can be another form of formative assessment.
For example, ask the following while coders are working on a project:
- What are three different ways you could change that sprite’s algorithm?
- What happens if we change the order of these blocks?
- What could you add or change to this code and what do you think would happen?
- How might you use code like this in everyday life?
- See the suggested questions throughout the lesson and the assessment examples for more questions.
Ipsative (Assessment as Learning)
The reflection and sharing section at the end of each lesson can be a form of ipsative assessment when coders are encouraged to reflect on both current and prior understandings of concepts and practices.
For example, ask the following after a project if they’ve done some coding before:
- How is this project similar or different from previous projects?
- What new code or tools were you able to add to this project that you haven’t used before?
- How can you use what you learned today in future projects?
- What questions do you have about coding that you could explore next time?
- See the reflection questions at the end for more suggestions.